
UNIT 2  

Unit 2: Neural Networks- Concept, biological neural system,. Evolution of neural network, McCullochPitts 

neuron model, activation functions, feed forward and feedback networks, learning rules – Hebbian, Delta, 

Perceptron learning and Windrow-Hoff,winner-take-all. Supervised learning- Perceptron learning, single 

layer/multilayer perceptron, Adaptive resonance architecture, applications of neural networks to pattern 

recognition systems such as character recognition, face recognition, Application of Neural networks in 

Image processing. 

 

LECTURE-1 

NEURAL NETWORK INTRODUCTION: 
 

What is a neuron? A neuron is the basic processing unit in a neural network sitting on our brain. 

It consists of 
 

1. Nucleus- 
 

2. Axon- Output node 
 

3. Dendrites-Input node 
 

4. Synaptic junction 
 

The dynamics of this synaptic junction is complex. We can see the signal inputs from the action 
of a neuron and through synaptic junction an output is actuated which is carried over through 
dendrites to another neuron. Here, these are the neurotransmitters. We learned from our 
experience that these synaptic junctions are either reinforced or in the sense they behave in 
such a way that the output of synaptic junction may excite a neuron or inhibit the neuron. This 
reinforcement of the synaptic weight is a concept that has been taken to artificial neural model. 

The objective is to create artificial machine and this artificial neural networks are motivated by 
certain features that are observed in human brain, like as we said earlier, parallel distributed 
information processing. 

 

Fig. ANN model 



Artificial neural networks are among the most powerful learning models. They have the 

versatility to approximate a wide range of complex functions representing multi-dimensional 

input-output maps. Neural networks also have inherent adaptability, and can perform robustly 

even in noisy environments. 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by 

the way biological nervous systems, such as the brain, process information. The key element 

of this paradigm is the novel structure of the information processing system. It is composed of 

a large number of highly interconnected simple processing elements (neurons) working in 

unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured 

for a specific application, such as pattern recognition or data classification, through a learning 

process. Learning in biological systems involves adjustments to the synaptic connections that 

exist between the neurons. This is true of ANNs as well. ANNs can process information at a 

great speed owing to their highly massive parallelism. 

A trained neural network can be thought of as an "expert" in the category of information it has 

been given to analyse. This expert can then be used to provide projections given new situations 

of interest and answer "what if" questions. 

Advantages of ANN: 

1. Adaptive learning: An ability to learn how to do tasks based on the data given for training 
or initial experience. 

2. Self-Organisation: An ANN can create its own organisation or representation of the 

information it receives during learning time. 

3. Real Time Operation: ANN computations may be carried out in parallel, and special 

hardware devices are being designed and manufactured which take advantage of this capability. 

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads 

to the corresponding degradation of performance. However, some network capabilities may 

be retained even with major network damage. 

Table- Difference between the brain and a digital Computer 

 

 
Differences human brain & ANN: 

 

1. Computer has such fast speed of GHz, a traditional computer, however, when it comes 
to certain processing like pattern recognition and language understanding, the brain is 
very fast. 

2. Intelligence and self-awareness, are absent in an artificial machine. 



 

Fig. An artificial neuron 

An Artificial Neuron: 

Basic computational unit in an artificial neural network is neuron. Obviously, it has to be an 

artificial neuron. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. An artificial Neuron in linear NN 

This artificial neuron has three basic elements: 

1. Nodes, 

2. Weights and 

3. Activation function. 

Between input nodes and output nodes, there are synaptic weights w
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There can be as many weights and these weights are multiplied with the signal as they reach 

the output unit, where the output is simply sum of the signal multiplied with the weights and 

then this output goes to an activation function f. 



 

Fig. Basic processing unit- the neuron 
 

In a simple neuron, if input signals be x x x with weights w , w and w The weighted sum 

1,    2,    n 1 2 n. 

will activate this total output by an activation function f. That is your output. What you are 
seeing is actually a nonlinear map from input vector x to output y. A single neuron has single 

i 

output but multiple inputs. Inputs are multiple for a single neuron and the output is unique, y 

and this output y and the input bear a nonlinear relationship, by f. Neural networks can be built 

using this single neuron. We can use the single neuron and build neural networks. 
Analogy to brain: 

Artificial Neural Network (ANN) is a system which performs information processing. An ANN 

resembles or it can be considered as a generalization of mathematical model of human brain 

assuming that 

1. Information processing occurs at many simple elements called neurons. 

2. Signals are passed between neurons over connection links. 

3. Each connection link has an associated weight, which in a typical neural net multiplies 

the signal transmitted. 

 

ANN is built with basic units called neurons which greatly resemble the neurons of human 

brain. A neural net consists of a large number of simple processing elements called neurons. 

Each neuron applies an activation function to its net input to determine its output signal. Every 

neuron is connected to other neurons by means of directed communication links, each with an 

associated weight. Each neuron has an internal state called its activation level, which is a 

function of the inputs it has received. As and when the neuron receives the signal, it gets added 

up and when the cumulative signal reaches the activation level the neuron sends an output. Till 

then it keeps receiving the input. So activation level can be considered as a threshold value for 

us to understand. 

In general, a neural network is characterized by 

1. Pattern of connections between the neurons called its architecture 

2. Method of determining the weights on the connections called its training or learning 

algorithm 

3. Its internal state called its Activation function. 



The arrangement of neurons into layers and the connection patterns within and between 

layers is called the net architecture. A neural net in which the signals flow from the input units 

to the output units in a forward direction is called feed forward nets. 

Interconnected competitive net in which there are closed loop signal paths from a unit back to 

it is called a recurrent network. In addition to architecture, the method of setting the values of 

the weights called training is an important characteristic of neural nets. Based on the training 

methodology used neural nets can be distinguished into supervised or unsupervised neural nets. 

For a neural net with supervised training, the training is accomplished by presenting a sequence 

of training vectors or patterns each with an associated target output vector. The weights are 

then adjusted according to a learning algorithm. For neural nets with unsupervised training, a 

sequence of input vectors is provided, but no target vectors are specified. The net modifies the 

weights so that the most similar input vectors are assigned to the same output unit. The neural 

net will produce a representative vector for each cluster formed. Unsupervised learning is also 

used for other tasks, in addition to clustering. 
LECTURE-2 

Activation functions: 



 
Architecture: 

 
Fig. Architecture of multilayer Neural network 

Artificial neural networks are represented by a set of nodes, often arranged in layers, and a set 

of weighted directed links connecting them. The nodes are equivalent to neurons, while the 

links denote synapses. The nodes are the information processing units and the links acts as 

communicating media. 

A neural network may have different layers of neurons like 

1. input layer, 

2. hidden layer, 

3. output layer. 

The input layer receives input data from the user and propagates a signal to the next layer called 

the hidden layer. While doing so it multiplies the weight along with the input signal. The hidden 

layer is a middle layer which lies between the input and the output layers. The hidden layer 

with non linear activation function increases the ability of the neural network to solve many 

problems than the case without the hidden layer. The output layer sends its calculated output 

to the user from which decision can be made. Neural nets can also be classified based on the 

above stated properties. 

 

There are a wide variety of networks depending on the nature of information processing carried 

out at individual nodes, the topology of the links, and the algorithm for adaptation of link 

weights. Some of the popular among them include: 



Perceptron: Definition: It‟s a step function based on a linear combination of real-valued 

inputs. If the combination is above a threshold it outputs a 1, otherwise it outputs a –1. This 

consists of a single neuron with multiple inputs and a single output. It has restricted information 

processing capability. The information processing is done through a transfer function which is 

either linear or non-linear. 
 

 
 

Fig. A perceptron 

A perceptron can learn only examples that are called “linearly separable”. These are 

examples that can be perfectly separated by a hyperplane. 

Perceptrons can learn many boolean functions: AND, OR, NAND, NOR, but not XOR 

However, every boolean function can be represented with a perceptron network that has two 

levels of depth or more. 

The weights of a perceptron implementing the AND function is shown below. 
 

Fig. AND operation on inputs by a single perceptron 

Multi-layered Perceptron (MLP): It has a layered architecture consisting of input, hidden 

and output layers. Each layer consists of a number of perceptrons. The output of each layer is 



transmitted to the input of nodes in other layers through weighted links. Usually, this 

transmission is done only to nodes of the next layer, leading to what are known as feed forward 

networks. MLPs were proposed to extend the limited information processing capabilities of 

simple perceptrons, and are highly versatile in terms of their approximation ability. Training 

or weight adaptation is done in MLPs using supervised backpropagation learning. 

Adding a hidden layer: 

The perceptron, which has no hidden layers, can classify only linearly separable patterns. 

The MLP, with at least 1 hidden layer can classify any linearly non-separable classes also. 

An MLP can approximate any continuous multivariate function to any degree of accuracy, 

provided there are sufficiently many hidden neurons (Cybenko, 1988; Hornik et al, 1989). A 

more precise formulation is given below. 

A serious limitation disappears suddenly by adding a single hidden layer. 

It can easily be shown that the XOR problem which was not solvable by a Perceptron can be 

solved by a MLP with a single hidden layer containing two neurons. 
 

Figure 6.2.1.1: MLP for solving Xor 

 
 

Recurrent Neural Networks: RNN topology involves backward links from output to the input 

and hidden layers. The notion of time is encoded in the RNN information processing scheme. 

They are thus used in applications like speech processing where inputs are time sequences data. 



 
 

Fig. Multilayer feed back network (Recurrent Neural Network) 

 
 

Self-Organizing Maps: SOMs or Kohonen networks have a grid topology, wit unequal grid 

weights. The topology of the grid provides a low dimensional visualization of the data 

distribution. These are thus used in applications which typically involve organization and 

human browsing of a large volume of data. Learning is performed using a winner take all 

strategy in a unsupervised mode. It is described in detail later. 

Single layer Network: 

A neural net with only input layer and output layer is called single layer neural network. A 

neural network with input layer, one or more hidden layers and an output layer is called a 

multilayer neural network. A single layer network has limited capabilities when compared to 

the multilayer neural networks. 
 

 

Fig. Single Layer feed foreward Neural Network 
 

LECTURE-3 

 

Steps in developing NN: 

 Network formation 

Neural network consists of an input layer, an output layer and a hidden layer. While a neural 

network is constructed, the number of neurons in each layer has to be fixed. The input layer 

will have neurons whose number will be equal to the number of features extracted. The number 

of neurons in the output layer will be equal to the number of pattern classes. The 



number of neurons in the hidden layer is decided by trial and error basis. With a minimum 

number of neurons in the hidden layer, the neural network will be constructed and the 

convergence will be checked for. Then the error will be noted. The number of neurons for 

which the error is minimum, can be taken and will be checked for reduced error criterion. 

 Data preprocessing and normalization 

Data selection and pre processing can be a demanding and intricate task. Neural net is as 

good as the input data used to train it. If important data inputs are missing, then the effect on 

the neural network‟s performance can be significant. The most appropriate raw input data must 

be preprocessed. Otherwise the neural network will not produce accurate results. 

Transformation and normalization are two widely used preprocessing methods. Transformation 

involves manipulating raw data inputs to create a single input to a net, while normalization is 

a transformation performed on a single data input to distribute the data evenly and scale it into 

an acceptable range for the network. Knowledge of the domain is important in choosing 

preprocessing methods to highlight the features in the data, which can increase the ability of 

the network to learn the association between inputs and outputs. Data normalization is the final 

preprocessing step. In normalizing data, the goal is to ensure that the statistical distribution of 

values should be scaled to match the range of the input neurons. The simplest method of 

normalization can be done using the formula 

X normalized = (X-μ) / σ where μ and σ are the mean and standard deviation of the input data. 

Perceptron Learning 

Learning a perceptron means finding the right values for W. The hypothesis space of a 

perceptron is the space of all weight vectors. 

The perceptron learning algorithm can be stated as below. 

 

1. Assign random values to the weight vector 

2. Apply the weight update rule to every training example 

3. Are all training examples correctly classified? 

a. Yes. Quit 

b. No. Go back to Step 2. 

There are two popular weight update rules. 

i) The perceptron rule, and 

ii) Delta rule 

 

The Perceptron Rule 

For a new training example X = (x1, x2, …, xn), update each weight according to this rule: 

wi = wi + Δwi 

Where Δwi = η (t-o) xi 

t: target output 

o: output generated by the perceptron 

η: constant called the learning rate (e.g., 0.1) 

Comments about the perceptron training rule: 

Example means training data. 

• If the example is correctly classified the term (t-o) equals zero, and no update on the weight 

is necessary. 

• If the perceptron outputs –1 and the real answer is 1, the weight is increased. 

• If the perceptron outputs a 1 and the real answer is -1, the weight is decreased. 

• Provided the examples are linearly separable and a small value for η is used, the rule is 

proved to classify all training examples correctly (i.e, is consistent with the training data). 

The Delta Rule 



What happens if the examples are not linearly separable? 

To address this situation we try to approximate the real concept using the delta rule. 

The key idea is to use a gradient descent search. We will try to minimize the following error: 

E = ½ Σi (ti – oi) 2 

where the sum goes over all training examples. Here oi is the inner product WX and not 

sgn(WX) as with the perceptron rule. The idea is to find a minimum in the space of weights 

and the error function E. 

The delta rule is as follows: 

For a new training example X = (x1, x2, …, xn), update each weight according to this rule: 

wi = wi + Δwi 

Where Δwi = -η E‟(W)/wi 

η: learning rate (e.g., 0.1) 

It is easy to see that 

E‟(W)/ wi = Σi (ti – oi) (-xi) 

So that gives us the following equation: 

wi = η Σi (ti – oi) xi 

There are two differences between the perceptron and the delta rule. The perceptron is based 

on an output from a step function, whereas the delta rule uses the linear combination of inputs 

directly. The perceptron is guaranteed to converge to a consistent hypothesis assuming the data 

is linearly separable. The delta rules converges in the limit but it does not need the condition 

of linearly separable data. 

There are two main difficulties with the gradient descent method: 

1. Convergence to a minimum may take a long time. 

 

2. There is no guarantee we will find the global minimum. 

These are handled by using momentum terms and random perturbations to the weight vectors. 

LECTURE-4 

ADALINE & MADALINE: 

 

Tne Adaline networks(ADAptive LINear Element) an d Madaline (Multiple Adaline) were 

developed by Widrow. The structures use neurons and step/ sigmoidal activation function. 

ADALINE has one output neuron but MADALINE has many. The learning is different from 

a perceptron. It is here by Widrow-Hoff or LMS (Least Mean Square error) rule. Analogical 

input or out put can be found by this network as minimum error function is searched befor 

applying activation function. 

ADALINE: 

The structure includes an adaptive linear combiner (ALC) to obtain linear response that can 

be applied to other elements of bipolar commutation. IF O/P of ALC is +ve response of 

ADALINE is +1, and if –ve result of ADALINE is -1. It is represented by: 



 

 

 

 

 

 

 
(3.11) 

 



 

 



 
Fig. MADALINE network 

LECTURE-5 

The Multi-layered Perceptron training: 

Improvements over Perceptron: 

1) Smooth nonlinearity - sigmoid 

2) 1 or more hidden layers 

 
Training the hidden layer: 

Not obvious how to train the hidden layer parameters. 

The error term is meaningful only to the weights connected to the output layer. How to adjust 

hidden layer connections so as to reduce output error? – credit assignment problem. 

Any connection can be adapted by taking a full partial derivative over the error function, but 

then to update a single weight in the first stage we need information about distant 

neurons/connections close to the output layer (locality rule is violated). In a large network with 

many layers, this implies that information is exchanged over distant elements of the network 

though they are not directly connected. Such an algorithm may be mathematically valid, but is 

biologically unrealistic. 

 
 

The Backpropagation Algorithm: 



As in Perceptron, this training algorithm involves 2 passes: 

The forward pass – outputs of various layers are computed 

The backward pass – weight corrections are computed 

Consider a simple 3-layer network with a single neuron in each layer. 

 

 



 

 

Therefore, 



j 

j j 

jk 
f = − f x 

(6.2.2.1.16) 

Similarly the update rule for the threshold term is, 

 f = − f (6.2.2.1.17) 
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Fig. Training using Back propagation algorithm 

Traning: 

Randomly initialize weights. 

Train network using backprop eqns. 

Stop training when error is sufficiently low and freeze the weights. 

Testing 

Start using the network. 

Merits of MLP trained by BP: 

a) A general solution to a large class of problems. 

b) With sufficient number of hidden layer nodes, MLP can approximate arbitrary target 

functions. 

c) Backprop applies for arbitrary number of layers, partial connectivity (no loops). 

d) Training is local both in time and space – parallel implementation made easy. 

e) Hidden units act as “feature detectors.” 

f) Good when no model is available 

 
Problems with MLP trained by BP: 

a) Blackbox approach 

b) Limits of generalization not clear 

c) Hard to incorporate prior knowledge of the model into the network 

d) slow training 



e) local minima 

 
LECTURE-6 

Architectures of MLP: 

If there is no nonlinearity then an MLP can be reduced to a linear neuron. 

1. Universal Approximator: 

For the above theorem to be valid, the sigmoid function g(.) has to satisfy some conditions. It 

must be: 1) non-constant, 2) bounded, 3) monotone-increasing and 4) continuous. 

All the four transfer functions described in the section on Perceptrons satisfy conditions #1,2 

and 3. But the hardlimiting nonlinearities are not continuous. Therefore, the logistic function 

or the tanh function are suitable for use as sigmoids in MLPs. 

2. In general more layers/nodes greater network complexity 

 

Although 3 hidden layers with full connectivity are enough to learn any function often more 

hidden layers and/or special architectures are used. 

 

More hidden layers and/or hidden nodes: 

3- layer network: 

Arbitrary continuous function over a finite domain 

4- layer network 

Neurons in a 3-layer architecture tend to interact globally. 

In a complex situation it is hard to improve the approximation at one point without worsening 

it at another. 
So in a 4-layer architecture: 

st 

1 hidden layer nodes are combined to construct locally sensitive neurons in the second 
hidden layer. 

Discontinuous functions: 

learns discontinuous (inverse function of continuous function) functions also (Sontag, 1992) 
For hard-limiting threshold functions: 

st 

1 hidden layer: semi-infinite regions separated by a hyper-plane 
nd 

2 hidden layer: convex regions 
rd 

3 hidden layer: non-convex regions also 
Training MLP: 

1. Initialization: is VERY important. 



g‟(.) appears on the right side of all weight update rules.er sections 6.1.1, 6.1.2, 6.2.1). Note 

that g‟(.) is high at the origin and falls on both sides. Therefore most learning happens when 

the net input (h) to the neurons is close to 0. Hence it is desirable to make initial weights small. 

A general rule for initialization of input weights for a given neuron is: 
 

 
2. Batch mode and Sequential mode: 

 

Epoch: presentation of all training patterns is called an epoch. 

Batch mode: 

Updating network weights once every epoch is called batch mode update. 

- memory intensive 

- greater chance of getting stuck in local minima 

 
Sequential mode: 

Updating the network weights after every presentation of a data point is sequential mode of 

update. 

- lesser memory requirement 

- The random order of presentation of input patterns acts as a noise source lesser chance of 

local minima 

 
Rate of learning: 

We have already seen the tradeoffs involved in choice of a learning rate. 

Small learning rate η,approximate original continuous domain equations more closely but 

slows down learning. 

Large learning rate η ,oorer approximation of original equations. Error may not decrease 

monotonically and may even oscillate. But learning is faster.. 

A good thumb rule for choosing eta 'η': 

η = 1/m 

Where „m‟ is the number of inputs to a neuron. This rule assumes that there are different η s 

for different neurons. 

3. Important tip relating learning rate and error surface: 

 

Rough error surface,slow down, low η 

Smooth (flat) error surface, speed up, high η 

i) Momentum: 

 

a) If |a| <1, the above time-series is convergent. 

b) If the sign of the gradient remains the same over consecutive iterations the weighted sum 

delta w
ji 

grows exponentially i.e., accelerate when the terrain is clear. 

c) If the gradient changes sign in consecutive iterations, delta w shrinks in magnitude i.e., 
ji 

slow down when the terrain is rough. 



 

 

ii) Separate eta for each weight: 

 

a) Separate η for each weight 

b) Every eta varies with time 

c) If delta(w) changes sign several time in the past few iters, decrease η 

d) If delta(w) doesn‟t change sign in the past few iters, increase η 

 

Stopping Criteria: when do we stop training? 

a) Error < a minimum. 

b) Rate of change in error averaged over an epoch < a minimum. 

c) Magnitude of gradient ||g(w)|| < a minimum. 

d) When performance over a test set has peaked. 

 
Premature Saturation: 

All the weight modification activity happens only when |h| is within certain limits. 

g‟(h) ≈ 0, or delta(w) = 0, for large |h|. 

NN gets stuck in a shallow local minimum. 

Solutions: 

1) - Keep a copy of weights 

- Retract to pre-saturation state 

- Perturb weights, decrease η and proceed 

2) - Reduce sigmoid gain (lambda) initially 

e) Increase lambda gradually as error is minimized 

 

Network doesn‟t get stuck, but never settles either. 

Testing/generalization: 

Idea of overfitting or overtraining: 

Using too many hidden nodes, may cause overtraining. The network might just learn noise 

and generalize poorly. 

Example of polynomial interpolation: 
Consider a data set generated from a quadratic function with noise added. A linear fit is likely 

th 

to give a large error. Best fit is obtained with a quadratic function. Fit 10 degree might give 

a low error but is likely to learn the variations due to noise also. Such a fit is likely to do 

poorly on a test data set. This is called overfitting or poor generalization. 
This happens because there are many ways of generalizing from a given training data set. 

The above Venn diagram illustrates the possibility of generalizing in multiple ways from a 

given training data set. U is the universe of all possible input-output patterns. F (the ellipse) 



represents the set of I/O pairs that define the function to be learnt by the mlp. T (circle) denotes 

the training data set which is a subset of F. X denotes the test data set. The dotted rectangle 

denotes the actual function learnt by the NN, which is consistent with the training set T, but is 

completely non-overlapping with the test set X, and very different from the unknown function 

F. 

 

 
Applications of MLP 

Three applications of MLPs that simulate aspects of sensory, motor or cognitive functions are 

described. 

1. Nettalk 

2. Past tense learning 

3. Autonomous Land Vehicle in a Neural Network (ALVINN) 
LECTURE-6 

 
Multilayer Feed-Foreward Network: 

 

 

Fig. Characteristics of Multilayer feed-foreward network 



The algorithm that was derived using gradient descent for nonlinear neural networks with 

nonlinear activation function is popularly known as back propagation learning algorithm, 

although the learning algorithm still is derived using gradient descent rule. 
 

Multilayer feed forward network has more hidden layers and again, when I say feed forward 

network, the connections are all allowed only from any layer to its succeeding layer, but the 

connections are not allowed from any layer to its preceding layer. The example is you see 

here there are four layers. These are all inputs. First hidden layer, second hidden layer, third 

hidden layer and this is output layer. When we say the number of layers, we do not count the 

input layer as one of the layers. When I say two layered network, then I have only one hidden 

layer and next layer becomes output layer. 

 

Fig. Multilayer feed foreward network 

 

This particular configuration means there are sub-units, sub-neurons here and this particular 

configuration, if I connect you will see why I say feed forward network, because I am able to 

connect any layer from its preceding layer. That means connections are allowed from the 

preceding layer to any layer, but cannot allow the feedback connection. (Refer Slide Time: 

30:54) This is called feedback connection; this is not allowed. This is allowed. From this layer, 

I can connect to this layer. This is allowed, but I cannot allow from this layer to connect to this 

layer. These are called feedback connections. They are not allowed and that is why this is 

known as feed forward network. 

Today, we will derive a two-layered feed forward neural network with sigmoid activation 

function. We can very easily see that this is 1 layer; this is the only hidden layer and this is 

the only output layer; output layer is always only one. 

We have a certain convention that we will put while deriving a back propagation learning 

algorithm for this. The same simple principle; given training data, we allow the input to pass 

through the network, compute the error here, use the gradient descent rule and the back 

propagated error are used to modify the weights here that is between output layer and hidden 

layer and again another form of back propagated error here has to be used for modification of 

the weights between input layer and hidden layer. This is again the convention that we will use. 



 

Fig. The Gradient descent rule 

 
 

After choosing the weights of the network randomly, the backpropagation algorithm is used 

to compute the necessary corrections. The algorithm can be decomposed in the following four 

steps: 

i) Feed-forward computation 

ii) Backpropagation to the output layer 

iii) Backpropagation to the hidden layer 

iv) Weight updates 

The algorithm is stopped when the value of the error function has become sufficiently small. 

 

In the case of p > 1 input-output patterns, an extended network is used to compute the error 

function for each of them separately. The weight corrections The Backpropagation Algorithm 

are computed for each pattern and so we get, for example, for weight w(1)ij the corrections 
 

The necessary update in the gradient direction is then 



 
 

We speak of batch or off-line updates when the weight corrections are made in this way. 

Often, however, the weight updates are made sequentially after each pattern presentation (this 

is called on-line training). In this case the corrections do not exactly follow the negative 

gradient direction, but if the training patterns are selected randomly the search direction 

oscillates around the exact gradient direction and, on average, the algorithm implements a 

form of descent in the error function. The rationale for using on-line training is that adding 

some noise to the gradient direction can help to avoid falling into shallow local minima of the 

error function. Also, when the training set consists of thousands of training patterns, it is very 

expensive to compute the exact gradient direction since each epoch (one round of 

presentation of all patterns to the network) consists of many feed-forward passes and on-line 

training becomes more efficient. 

 

Back Propagation Neural Network 

Backpropagation is a training method used for a multi layer neural network. It is also called the 

generalized delta rule. It is a gradient descent method which minimizes the total squared error 

of the output computed by the net. Any neural network is expected to respond correctly to the 

input patterns that are used for training which is termed as memorization and it should respond 

reasonably to input that is similar to but not the same as the samples used for training which is 

called generalization. The training of a neural network by back propagation takes place in three 

stages 1. Feedforward of the input pattern 2. Calculation and Back propagation of the associated 

error 3. Adjustments of the weights After the neural network is trained, the neural network has 

to compute the feedforward phase only. Even if the training is slow, the trained net can produce 

its output immediately. 

Architecture 

A multi layer neural network with one layer of hidden unitss is shown in the figure. The output 

units and the hidden units can have biases. These bias terms are like weights on connections 

from units whose output is always 1. During feedforward the signals flow in the forward 

direction i.e. from input unit to hidden unit and finally to the output unit. During back 

propagation phase of learning, the signals flow in the reverse direction. 
Algorithm 

The training involves three stages 1. Feedforward of the input training pattern 2. Back 

propagation of the associated error 3. Adjustments of the weights. During feedforward, each 

input unit (Xi) receives an input signal and sends this signal to each of the hidden units Z1, Z2, 

…Zn. Each hidden unit computes its activation and sends its signal to each output unit. Each 

output unit computes its activation to compute the output or the response of the neural net for 

the given input pattern. 

During training, each output unit compares its computed activation yk, with its target value tk 

to determine the associated error for the particular pattern. Based on this error the factor ∂k for 

all m values are computed. This computed ∂k is used to propagate the error at the output unit 

Yk back to all units in the hidden layer. At a later stage it is also used for updation of weights 

between the output and the hidden layer. In the same way ∂j for all p values are computed for 

each hidden unit Zj. The values of ∂j are not sent back to the input units but are used to update 

the weights between the hidden layer and the input layer. Once all the ∂ factrs are known, the 

weights for all layers are changed simultaneously. The adjustment to all weights wjk is based 

on the factor ∂k and the activation zj of the hidden unit Zj. The change in weight to the 

connection between the input layer and the hidden layer is based on ∂j and the activation xi 

of the input unit. 



Activation Function 

An activation function for a back propagation net should have important characteristics. It 

should be continuous, Differentiable and monotonically non- decreasing. For computational 

efficiency, it is better if the derivative is easy to calculate. For the commonly used activation 

function, the derivative can be expressed in terms of the value of the function itself. The 

function is expected to saturate asymptotically. The commonly used activation function is the 

binary sigmoidal function. 

Training Algorithm 

The activation function used for a back propagation neural network can be either a bipolar 

sigmoid or a binary sigmoid. The form of data plays an important role in choosing the type of 

the activation function. Because of the relationship between the value of the function and its 

derivative, additional evaluations of exponential functions are not required to be computed. 

Algorithm 

Step 0: Initialize weights 

Step 1: While stopping condition is false, do steps 2 to 9 

Step 2: For each training pair, do steps 3 - 8 Feed forward 

Step 3: Input unit receives input signal and propagates it to all units in the hidden layer 

Step 4: Each hidden unit sums its weighted input signals 

Step 5: Each output unit sums its weighted input signals and applied its activation function to 

compute its output signal. 

Backpropagation Step 6: Each output unit receives a target pattern corresponding to the input 

training pattern, computes its error information term δk = ( tk – yk) f‟ (y_ink) Calculates its 

bias correction term ΔWok = αδk And sends δk to units in the layer below 

Step 7: Each hidden unit sums its delta inputs Multiplies by the derivative of its activation 

function to calculate its error information term Calculates its weight correction term Δvij = 

αδjxi And calculates its bias correction term Δvoj = αδj Update weights and biases 

Step 8: Each output unit updates its bias and weights Wjk(new) = wjk(old) + Δ wjk Each hidden 

unit updates its bias and weights Vij (new) = vij (old) + Δvij 

Step9:Test stopping condition 
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Radial Basis Function Networks: 

 

Fig. RBF network 



j 

• These are 3-layer networks that can approximate any continuous function through a basis 

function expansion. 

• The basis functions here (which are data dependent as earlier) exhibit some radial 

symmetry. 

• These networks have the so called perfect interpolation property. 

The function represented by an RBF network with p hidden nodes can be written as 

 

X is the input to the network. 
• wj is weight from jth hidden node to the output. 

• Á (||X −  j ||) is the output of the jth hidden node 

and  j is the parameter vector associated with jth 

hidden node, j = 1, ・・・ , p. 

A very popular model is the Gaussian RBF network. 

 
 

• Here the output is written as 

 

• The  is called the center of the jth hidden or RBF node and  is called the width. 

• We can have different  for different hidden nodes. 

We next consider learning the parameters of a RBF network from training samples. 

• Let {(Xi, di), i = 1, ・ ・ ・ ,N} be the training set. 

• Suppose we are using the Gaussian RBF. 

• Then we need to learn the centers ( j ) and widths ( ) of the hidden nodes and the weights 

into the output node (wj). 

Like earlier, we can find parameters to minimize empirical risk under squared error loss 

function. 

• Same as minimizing sum of squares of errors. Let 

 

J is a function of , wj ,  j , j = 1, ・ ・ ・ , p. 

We can find the weights/parameters of the network to minimize J. 

• To minimize J, we can use the standard iterative algorithm of gradient descent. 

• This needs computation of gradient which can be done directly from the expression for J. 



• For this network structure there are no special methods to evaluate all the needed partial 

derivatives. Such a gradient descent algorithm is certainly one method of learning an RBF 

network from given training data. 

• This is a general-purpose method for learning an RBF network. 

• Like in the earlier case, we have to fix p, the number of hidden nodes. 

• Such procedure would have the usual problems of converging to a local minimum of the error 

function. 

• There are also other methods of learning an RBF network. 

• If we have the basis functions, Áj , then it is exactly same as a linear model and we can use 

standard linear least squares method to learn wj . 

• To fix Áj , we need to essentially fix  j (and may be  ). 

• So, if we can somehow fix centers and widths of the RBF nodes, then we can learn the wj 

very easily. 
As we have discussed earlier, these RBF networks use „local‟ representations. 

• What this means is that  j should be „representative‟ points of the feature space and they 

should „cover‟ the feature space. 

• Essentially, the proof that these networks can represent any continuous function is based on 

having such centers for RBF nodes. 
• We can use such ideas to formulate methods for fixing centers of RBF nodes. 

One simple method of choosing centers,  j 

examples. 

, is to randomly choose p of the training 

• We know that with N hidden nodes and centers same as training examples, we get perfect 

interpolation. 

• Hence we can take some of the training examples as centers. 

• There can be some variations on this theme. 

• However, such a method does not, in general, ensure that we have representative points in 

the feature space as centers. 

When we have p hidden nodes, we need p „centers‟. 

• Hence we are looking for p number of „representative‟points in the feature space. 

• The only information we have are the N training examples. 

• Hence the problem is: 

given N points, Xi, i = 1, ・ ・ ・ ,N in <m, find p „representative‟ points in <m. 

• This is the „clustering problem‟ This is a problem of forming the data into p clusters. 

• We can take the „cluster centers‟ to be the representative points. 

• The kind of clusters we get depends on how we want to formalize the notion of the p points 

being representative of the N data points. 

• We now look at one notion of clustering that is popular. 

Let 1 , ・ ・ ・ , p represent the p cluster centers. 

• Now we need an objective function that specifies how representative these are of the data 

Xi, i = 1, ・ ・ ・ ,N. 

Now we can define a cost function as 

 

• The J is a function of  j , j = 1, ・ ・ ・ , p. (Note that Sj are also functions of the  j ‟s). 



• For a given set of centers, { j }, J gives us the total error in approximating each of the 

training data by its nearest cluster center. 

• Hence we want to choose centers to minimize J We now discuss a simple algorithm to find 
centers to minimize J. 

• This is known as K-means clustering algorithm. 

(Originally proposed by Lloyd in the context of vector quantization). 

• We are given N data points, Xi, i = 1, ・ ・ ・ ,N. 

We want to find p cluster centers  j , j = 1, ・ ・ ・ , p, to minimize J. 

• We first rewrite J in a different form to motivate our algorithm. 

We think of the problem as finding the centers 

clusters. 

1 , ・ ・ ・ ,  p and assigning Xi to these 

• Let  j , n = 1, ・ ・ ・ ,N, j = 1, ・ ・ ・ , p be indicators of the cluster assignment. 

• That is, if we assign Xn to cluster j, then we would have 

• Now we can rewrite J as 

1 = 1 and p = 0, 

 

 
 

 
 

We now have to find a way of minimizing J wrt all nj and j . 

 

 



 
 

 

Note that for a given n, nj is 1 for exactly one j (and it is zero otherwise). 

• Thus the μj would be the mean of all data vectors assigned to the jth cluster. 
• This is the reason for the name K-means clustering. 

• What we derived are optimum values for 

μj fixed and optimum values for μj keeping 

nj  keeping 

nj fixed. 

• Hence, in an algorithm we do this repeatedly. 

• This is like the EM algorithm. 
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Experiences or learning: 

Learning algorithms use experiences in the form of perceptions or perception action pairs to 

improve their performance. The nature of experiences available varies with applications. Some 

common situations are described below. 

Supervised learning: In supervised learning a teacher or oracle is available which provides the 

desired action corresponding to a perception. A set of perception action pair provides what is 

called a training set. Examples include an automated vehicle where a set of vision inputs and 

the corresponding steering actions are available to the learner. 

 

Fig. Supervised learning 

Unsupervised learning: In unsupervised learning no teacher is available. The learner only 

discovers persistent patterns in the data consisting of a collection of perceptions. This is also 

called exploratory learning. Finding out malicious network attacks from a sequence of 

anomalous data packets is an example of unsupervised learning. 

Active learning: Here not only a teacher is available, the learner has the freedom to ask the 

teacher for suitable perception-action example pairs which will help the learner to improve its 

performance. Consider a news recommender system which tries to learn an users preferences 

and categorize news articles as interesting or uninteresting to the user. The system may present 

a particular article (of which it is not sure) to the user and ask whether it is interesting or not. 

Reinforcement learning: In reinforcement learning a teacher is available, but the teacher 

instead of directly providing the desired action corresponding to a perception, return reward 

and punishment to the learner for its action corresponding to a perception. Examples include 

a robot in a unknown terrain where its get a punishment when its hits an obstacle and reward 

when it moves smoothly. 

In order to design a learning system the designer has to make the following choices based on 

the application. 
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Unsupervised Learning in Neural Networks: 

 

Unsupervised learning mechanisms differ from supervised learning in that there is no "teacher" 

to instruct the network. 



Competitive Learning: 

Competitive learning is a form of unsupervised learning which performs clustering over the 

input data. In a competitive learning network with n-output neurons, each output neuron is 

associated with a cluster. When a data point from a cluster is presented to the network, only the 

neuron corresponding to that cluster responds, while all other neurons remain silent. The single 

neuron that responds is often called a “winner” and therefore a competitive learning network 

of the kind just described is also known as a “winner-take-all” network. 

It is easiest to introduce CL mechanism as a slight variation of Hebb‟s rule. 

 

Kohonen Self-organizing Map: 

It is also known as Kohonen feature map or topology-preserving map or Kohonen Self- 

organizing . 

Information is often represented spatially in the two-dimensional neuronal sheets in the brain, 

in both the cortex and subcortical structures. We have learnt about the somtosensory, motor 

and visual maps in the corresponding sensory cortices in the brain. A map, in its ordinary sense, 

denotes a two-dimensional representation of a real-world domain, such that nearby points in 

the domain are mapped onto nearby points in the map. 

Due to this “adjacency-preserving” property, these maps are also called topographic maps. 

Self-organizing maps (SOM) are models of the topographic maps of the brain, first proposed 

by Teovo Kohonen. 

The SOM model can be presented as an extension of the competitive learning model described 

in the previous section. It is constructed by adding a biologically-relevant feature that is not 

originally present in the competitive learning network. 

A key property of the SOM is that nearby or similar inputs activate nearby neurons in the map. 

The competitive learning network does not have this property. 

Consider a hypothetical competitive learning network with 3 output neurons. The input space 

is two-dimensional. The weight vectors w1, w2, w3 lie on a line as shown in Fig., with w1 in 

between w2 and w3. Note that such an arrangement is possible since there is no relation 

between the spatial position of the weight vectors and their indices. 
 

Fig. weight vectors and their indices when not related 
 

The essence of the modification proposed in the SOM model, is a mechanism that ensures that 

the weight vectors remain spatially ordered, while they also move towards the data points that 

activate them maximally. 

Unlike a competitive learning network, which consists of a single row of output neurons, a 

SOM consists of a m-dimensional grid of neurons. Usually two-dimensional SOMs are studied 

since SOMs were originally inspired by the two-dimensional maps in the brain. The topology 

of the grid is usually rectangular, though sometimes hexagonal topologies (Fig.) are also 

considered. 



 
 

Figure: Rectangular and hexagonal trajectories of Kohonen‟s network 

 

As in the case of competitive learning, the weight vector of the winner is moved towards the 

input, x. But addition, neurons close to the winner in the SOM are also moved towards the 

input, x, but with a lesser learning rate. Neurons that are nearby in the SOM are defined by a 

neighborhood N . 

 

 

Fig. For the neuron in white (center) the neurons in red represent the neighborhood if we 

consider the neighborhood radius to be 1 

 

Neighborhood size is large in the early stages, and is decreased gradually as training 

progresses. 

Learning Vector Quantization(LVQ): 

Vector quantization is noting but clustering, where Given a set of vectors {x}, find a set of 

representative vectors {wm; 1 ≤m ≤M} such that each x is quantized into a particular wm. 

{wm} locate at the mean (centroid) of the density distribution of each cluster. LVQ is an 

unsupervised pattern classifier where the actual class membership information is not used. 

Fig. Clusters of data 



Applications of LVQ: 

 

Speech Recognition 

• Robot Arm control 

• Industrial process control 

• automated synthesis of digital systems 

• channel equalization for telecommunication 

• image compression 

• radar classification of sea-ice 

• optimization problems 

• sentence understanding 

• classification of insect courtship songs 

LECTURE-10 

Linear neuron model: (Hebbian Learning) 

Hebb described a simple learning method of synaptic weight change. In Hebbian learning, 

when 2 cells have strong responses, and fire simultaneously, their connection strength or weight 

increases. The weight increase is proportional to the frequency at which they fire together. 
 

Fig. A simple network topology for Hebbian Learning, where Wij resides between two neurons 

 
 

Where η is the learning rate, f (.) is the neuron function, x is the input to the jth neuron. 

Since the weights are adjusted according to the correlation formula is a type of correlational 

learning rule. 

A sequence of learning patterns indexed by p is presented to the network. Initial weights are 

taken zero. So updated weight after entire data set is: 

Frequent input patterns have more impact on weights, giving largest output at end. 

The objective function is maximized to maximize output. 

 

This rule causes unconstrained growth of weights. Hebbian rule was modified by Oja by 

normalization. 



Modified Hebbian Learning: 
 

For small learning rate expanding in Taylor‟s series weight update rule becomes 

 

Here, a weight decay proportional to the squared output is added to maintain weight vector 

unit length automatically. 
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ANFIS: Adaptive Neuro-Fuzzy Inference Systems: 

ANFIS are a class of adaptive networks that are functionally equivalent to fuzzy inference 

systems. 

• ANFIS represent Sugeno & Tsukamoto fuzzymodels. 

• ANFIS uses a hybrid learning algorithm 

 

Fig. Architecture of ANFIS 

 

Ol,i is the output of the ith node of the layer l. 

• Every node i in this layer is an adaptive node with a node function 

O1,i = μAi(x) for i = 1, 2, or O1,i = μBi−2(x) for i = 3, 4 

• x (or y) is the input node i and Ai (or Bi−2) is a linguistic label associated with this node 

• Therefore O1,i is the membership grade of a fuzzy set (A1,A2,B1,B2). 

Typical membership function is Gaussian. 

Every node in this layer is a fixed node labelled Prod. 

• The output is the product of all the incoming signals. 

• O2,i = wi = μAi(x) ・ μBi(y), i = 1, 2 

• Each node represents the fire strength of the rule 

• Any other T-norm operator that perform the AND operator can be used 



Every node in this layer is a fixed node labelled Norm. 

• The ith node calculates the ratio of the ith rulet‟s firing strenght to the sum of all rulet‟s 

firing strengths. 

• O3,i = wi = wi w1+w2 , i = 1, 2 

• Outputs are called normalized firing strengths. 

Every node i in this layer is an adaptive node with a node function: 

O4,1 = wifi = wi(px + qiy + ri) 

• wi is the normalized firing strenght from layer 3. 

• {pi, qi, ri} is the parameter set of this node. 

• These are referred to as consequent parameters. 

The single node in this layer is a fixed node labeled sum, which computes the overall output 

as the summation of all incoming signals: 

• overall output = O5,1 =Pi wifi = Pi wifi Pi wi 

Hybrid Learning Algorithm: 

The ANFIS can be trained by a hybrid learning algorithm presented by Jang in the chapter 8 

of the book. 

• In the forward pass the algorithm uses least-squares method to identify the consequent 

parameters on the layer 4. 

• In the backward pass the errors are propagated backward and the premise parameters are 

updated by gradient descent. 

Fig. Two passes in the hybrid learning algorithm for ANFIS. 

Suppose that an adptive network has L layers and the kth layer has #(k) nodes. 

• We can denote the node in the ith position of the kth layer by (k, i). 

• The node function is denoted by Oki . 

• Since the node output depends on its incoming signals and its parameter set (a, b, c), we 

have 

• Notice that Oki is used as both node output and node function. Assume that a training data 

set has P entries. 

• The error measure for the pth entry can be defined as the sum of the squared error 

 

 

 

Tm,p is the mth component of the pth target. 

• OLm,p is the mth component the actual output vector. 

• The overall error is 



In order to implement the gradient descent in E we calculate the error rate E 

O for the pth training data for each node output O. 

• The error rate for the output note at (L, i) is 

For the internal node at (k, i), the error rate can be derived by the chain rule: 

 

where 1 ≤ k ≤ L − 1 

• The error rate of an internal node is a linear combination of the error rates of the nodes in 

the next layer. 

 

Consider _ one of the parameters. 

• Therefore 
 

where S is the set of nodes 

• The derivative of the overall error with respect to _ is 
 

 

 
 

The update formula for  is 

If the parameters are to be updated after each input-output pair (on-line training) then the 

update formula is: 
 

With the batch learning (off-line learning) the update formula is based on the derivative of 

the overall error with respect to α: 

 

Problems of the gradient descent are: 

The method is slow. 

• It is likely to be trapped in local minima. 



Hybrid Learning Rule: 

Combines: 

• the gradient rule; 

• the least squares estimate. 

Considere that the adptive network has only one output. 

• output = F(I, S) 

• I is the vector of input variables. 

• S is the set of parameters. 

• F is the function implemented by the ANFIS. 

• If there exists a function H such that the composite function H ◦ F is linear in some elements 

of S then these elements can be identified by LSM. 

More formally, if the parameter set S can be decomposed into two sets S = S1 ⊕ S2 (⊕ 
direct sum), such that H ◦ F is linear in the elements of S2 

• then applying H to output = F(I, S) we have H(output) = H ◦ F(I, S) (7) which is linear in the 

elements of S2. 

• Given values of elements of S1, it is possible to plug P training data in equation 7. 

• As a result we obtain a matrix equation A_ = y where _ is the unknown vector whose 

elements are parameters in S2. 

• This is the standard linear least-square problem. 

Combining LSE and gradient descent: 

- forward pass 

In batch mode, each epoch is composed of a forward pass and a backward pass. 

• In the forward pass an input vector is presented and the output is calculated creating a row 

in the matrices A and y. 

• The process is repeated for all training data and the parameters S2 are identified by BLS or 

RLS. 

• After S2 is identified the error for each pair is computed. 

Combining LSE and gradient descent: 

- backward pass 

The derivative of the error measure with respect to each node output propagate from the 

output toward the input. 

• The derivatives are: 
 

The parameters in S2 are updated by the gradient method 
 

Applications of ANFIS: 

1. Printed Character recognition 

2. Inverse Kinematics 

3. Nonlinear System identification 

4. Channel Equalization 



5. Feed back control system 

6. Adaptive noise cancellation 



 


