
UNIT 2

Unit 2: Neural Networks- Concept, biological neural system,. Evolution of neural network, McCullochPitts

neuron model, activation functions, feed forward and feedback networks, learning rules – Hebbian, Delta,

Perceptron learning and Windrow-Hoff,winner-take-all. Supervised learning- Perceptron learning, single

layer/multilayer perceptron, Adaptive resonance architecture, applications of neural networks to pattern

recognition systems such as character recognition, face recognition, Application of Neural networks in

Image processing.

LECTURE-1

NEURAL NETWORK INTRODUCTION:

What is a neuron? A neuron is the basic processing unit in a neural network sitting on our brain.

It consists of

1. Nucleus-

2. Axon- Output node

3. Dendrites-Input node

4. Synaptic junction

The dynamics of this synaptic junction is complex. We can see the signal inputs from the action
of a neuron and through synaptic junction an output is actuated which is carried over through
dendrites to another neuron. Here, these are the neurotransmitters. We learned from our
experience that these synaptic junctions are either reinforced or in the sense they behave in
such a way that the output of synaptic junction may excite a neuron or inhibit the neuron. This
reinforcement of the synaptic weight is a concept that has been taken to artificial neural model.

The objective is to create artificial machine and this artificial neural networks are motivated by
certain features that are observed in human brain, like as we said earlier, parallel distributed
information processing.

Fig. ANN model

Artificial neural networks are among the most powerful learning models. They have the

versatility to approximate a wide range of complex functions representing multi-dimensional

input-output maps. Neural networks also have inherent adaptability, and can perform robustly

even in noisy environments.

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by

the way biological nervous systems, such as the brain, process information. The key element

of this paradigm is the novel structure of the information processing system. It is composed of

a large number of highly interconnected simple processing elements (neurons) working in

unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured

for a specific application, such as pattern recognition or data classification, through a learning

process. Learning in biological systems involves adjustments to the synaptic connections that

exist between the neurons. This is true of ANNs as well. ANNs can process information at a

great speed owing to their highly massive parallelism.

A trained neural network can be thought of as an "expert" in the category of information it has

been given to analyse. This expert can then be used to provide projections given new situations

of interest and answer "what if" questions.

Advantages of ANN:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for training
or initial experience.

2. Self-Organisation: An ANN can create its own organisation or representation of the

information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and special

hardware devices are being designed and manufactured which take advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads

to the corresponding degradation of performance. However, some network capabilities may

be retained even with major network damage.

Table- Difference between the brain and a digital Computer

Differences human brain & ANN:

1. Computer has such fast speed of GHz, a traditional computer, however, when it comes
to certain processing like pattern recognition and language understanding, the brain is
very fast.

2. Intelligence and self-awareness, are absent in an artificial machine.

Fig. An artificial neuron

An Artificial Neuron:

Basic computational unit in an artificial neural network is neuron. Obviously, it has to be an

artificial neuron.

Fig. An artificial Neuron in linear NN

This artificial neuron has three basic elements:

1. Nodes,

2. Weights and

3. Activation function.

Between input nodes and output nodes, there are synaptic weights w
1
, w

2
, w

3
, w

4
, w

5
and w

6.

There can be as many weights and these weights are multiplied with the signal as they reach

the output unit, where the output is simply sum of the signal multiplied with the weights and

then this output goes to an activation function f.

Fig. Basic processing unit- the neuron

In a simple neuron, if input signals be x x x with weights w , w and w The weighted sum

1, 2, n 1 2 n.

will activate this total output by an activation function f. That is your output. What you are
seeing is actually a nonlinear map from input vector x to output y. A single neuron has single

i

output but multiple inputs. Inputs are multiple for a single neuron and the output is unique, y

and this output y and the input bear a nonlinear relationship, by f. Neural networks can be built

using this single neuron. We can use the single neuron and build neural networks.
Analogy to brain:

Artificial Neural Network (ANN) is a system which performs information processing. An ANN

resembles or it can be considered as a generalization of mathematical model of human brain

assuming that

1. Information processing occurs at many simple elements called neurons.

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which in a typical neural net multiplies

the signal transmitted.

ANN is built with basic units called neurons which greatly resemble the neurons of human

brain. A neural net consists of a large number of simple processing elements called neurons.

Each neuron applies an activation function to its net input to determine its output signal. Every

neuron is connected to other neurons by means of directed communication links, each with an

associated weight. Each neuron has an internal state called its activation level, which is a

function of the inputs it has received. As and when the neuron receives the signal, it gets added

up and when the cumulative signal reaches the activation level the neuron sends an output. Till

then it keeps receiving the input. So activation level can be considered as a threshold value for

us to understand.

In general, a neural network is characterized by

1. Pattern of connections between the neurons called its architecture

2. Method of determining the weights on the connections called its training or learning

algorithm

3. Its internal state called its Activation function.

The arrangement of neurons into layers and the connection patterns within and between

layers is called the net architecture. A neural net in which the signals flow from the input units

to the output units in a forward direction is called feed forward nets.

Interconnected competitive net in which there are closed loop signal paths from a unit back to

it is called a recurrent network. In addition to architecture, the method of setting the values of

the weights called training is an important characteristic of neural nets. Based on the training

methodology used neural nets can be distinguished into supervised or unsupervised neural nets.

For a neural net with supervised training, the training is accomplished by presenting a sequence

of training vectors or patterns each with an associated target output vector. The weights are

then adjusted according to a learning algorithm. For neural nets with unsupervised training, a

sequence of input vectors is provided, but no target vectors are specified. The net modifies the

weights so that the most similar input vectors are assigned to the same output unit. The neural

net will produce a representative vector for each cluster formed. Unsupervised learning is also

used for other tasks, in addition to clustering.
LECTURE-2

Activation functions:

Architecture:

Fig. Architecture of multilayer Neural network

Artificial neural networks are represented by a set of nodes, often arranged in layers, and a set

of weighted directed links connecting them. The nodes are equivalent to neurons, while the

links denote synapses. The nodes are the information processing units and the links acts as

communicating media.

A neural network may have different layers of neurons like

1. input layer,

2. hidden layer,

3. output layer.

The input layer receives input data from the user and propagates a signal to the next layer called

the hidden layer. While doing so it multiplies the weight along with the input signal. The hidden

layer is a middle layer which lies between the input and the output layers. The hidden layer

with non linear activation function increases the ability of the neural network to solve many

problems than the case without the hidden layer. The output layer sends its calculated output

to the user from which decision can be made. Neural nets can also be classified based on the

above stated properties.

There are a wide variety of networks depending on the nature of information processing carried

out at individual nodes, the topology of the links, and the algorithm for adaptation of link

weights. Some of the popular among them include:

Perceptron: Definition: It‟s a step function based on a linear combination of real-valued

inputs. If the combination is above a threshold it outputs a 1, otherwise it outputs a –1. This

consists of a single neuron with multiple inputs and a single output. It has restricted information

processing capability. The information processing is done through a transfer function which is

either linear or non-linear.

Fig. A perceptron

A perceptron can learn only examples that are called “linearly separable”. These are

examples that can be perfectly separated by a hyperplane.

Perceptrons can learn many boolean functions: AND, OR, NAND, NOR, but not XOR

However, every boolean function can be represented with a perceptron network that has two

levels of depth or more.

The weights of a perceptron implementing the AND function is shown below.

Fig. AND operation on inputs by a single perceptron

Multi-layered Perceptron (MLP): It has a layered architecture consisting of input, hidden

and output layers. Each layer consists of a number of perceptrons. The output of each layer is

transmitted to the input of nodes in other layers through weighted links. Usually, this

transmission is done only to nodes of the next layer, leading to what are known as feed forward

networks. MLPs were proposed to extend the limited information processing capabilities of

simple perceptrons, and are highly versatile in terms of their approximation ability. Training

or weight adaptation is done in MLPs using supervised backpropagation learning.

Adding a hidden layer:

The perceptron, which has no hidden layers, can classify only linearly separable patterns.

The MLP, with at least 1 hidden layer can classify any linearly non-separable classes also.

An MLP can approximate any continuous multivariate function to any degree of accuracy,

provided there are sufficiently many hidden neurons (Cybenko, 1988; Hornik et al, 1989). A

more precise formulation is given below.

A serious limitation disappears suddenly by adding a single hidden layer.

It can easily be shown that the XOR problem which was not solvable by a Perceptron can be

solved by a MLP with a single hidden layer containing two neurons.

Figure 6.2.1.1: MLP for solving Xor

Recurrent Neural Networks: RNN topology involves backward links from output to the input

and hidden layers. The notion of time is encoded in the RNN information processing scheme.

They are thus used in applications like speech processing where inputs are time sequences data.

Fig. Multilayer feed back network (Recurrent Neural Network)

Self-Organizing Maps: SOMs or Kohonen networks have a grid topology, wit unequal grid

weights. The topology of the grid provides a low dimensional visualization of the data

distribution. These are thus used in applications which typically involve organization and

human browsing of a large volume of data. Learning is performed using a winner take all

strategy in a unsupervised mode. It is described in detail later.

Single layer Network:

A neural net with only input layer and output layer is called single layer neural network. A

neural network with input layer, one or more hidden layers and an output layer is called a

multilayer neural network. A single layer network has limited capabilities when compared to

the multilayer neural networks.

Fig. Single Layer feed foreward Neural Network

LECTURE-3

Steps in developing NN:

 Network formation

Neural network consists of an input layer, an output layer and a hidden layer. While a neural

network is constructed, the number of neurons in each layer has to be fixed. The input layer

will have neurons whose number will be equal to the number of features extracted. The number

of neurons in the output layer will be equal to the number of pattern classes. The

number of neurons in the hidden layer is decided by trial and error basis. With a minimum

number of neurons in the hidden layer, the neural network will be constructed and the

convergence will be checked for. Then the error will be noted. The number of neurons for

which the error is minimum, can be taken and will be checked for reduced error criterion.

 Data preprocessing and normalization

Data selection and pre processing can be a demanding and intricate task. Neural net is as

good as the input data used to train it. If important data inputs are missing, then the effect on

the neural network‟s performance can be significant. The most appropriate raw input data must

be preprocessed. Otherwise the neural network will not produce accurate results.

Transformation and normalization are two widely used preprocessing methods. Transformation

involves manipulating raw data inputs to create a single input to a net, while normalization is

a transformation performed on a single data input to distribute the data evenly and scale it into

an acceptable range for the network. Knowledge of the domain is important in choosing

preprocessing methods to highlight the features in the data, which can increase the ability of

the network to learn the association between inputs and outputs. Data normalization is the final

preprocessing step. In normalizing data, the goal is to ensure that the statistical distribution of

values should be scaled to match the range of the input neurons. The simplest method of

normalization can be done using the formula

X normalized = (X-μ) / σ where μ and σ are the mean and standard deviation of the input data.

Perceptron Learning

Learning a perceptron means finding the right values for W. The hypothesis space of a

perceptron is the space of all weight vectors.

The perceptron learning algorithm can be stated as below.

1. Assign random values to the weight vector

2. Apply the weight update rule to every training example

3. Are all training examples correctly classified?

a. Yes. Quit

b. No. Go back to Step 2.

There are two popular weight update rules.

i) The perceptron rule, and

ii) Delta rule

The Perceptron Rule

For a new training example X = (x1, x2, …, xn), update each weight according to this rule:

wi = wi + Δwi

Where Δwi = η (t-o) xi

t: target output

o: output generated by the perceptron

η: constant called the learning rate (e.g., 0.1)

Comments about the perceptron training rule:

Example means training data.

• If the example is correctly classified the term (t-o) equals zero, and no update on the weight

is necessary.

• If the perceptron outputs –1 and the real answer is 1, the weight is increased.

• If the perceptron outputs a 1 and the real answer is -1, the weight is decreased.

• Provided the examples are linearly separable and a small value for η is used, the rule is

proved to classify all training examples correctly (i.e, is consistent with the training data).

The Delta Rule

What happens if the examples are not linearly separable?

To address this situation we try to approximate the real concept using the delta rule.

The key idea is to use a gradient descent search. We will try to minimize the following error:

E = ½ Σi (ti – oi) 2

where the sum goes over all training examples. Here oi is the inner product WX and not

sgn(WX) as with the perceptron rule. The idea is to find a minimum in the space of weights

and the error function E.

The delta rule is as follows:

For a new training example X = (x1, x2, …, xn), update each weight according to this rule:

wi = wi + Δwi

Where Δwi = -η E‟(W)/wi

η: learning rate (e.g., 0.1)

It is easy to see that

E‟(W)/ wi = Σi (ti – oi) (-xi)

So that gives us the following equation:

wi = η Σi (ti – oi) xi

There are two differences between the perceptron and the delta rule. The perceptron is based

on an output from a step function, whereas the delta rule uses the linear combination of inputs

directly. The perceptron is guaranteed to converge to a consistent hypothesis assuming the data

is linearly separable. The delta rules converges in the limit but it does not need the condition

of linearly separable data.

There are two main difficulties with the gradient descent method:

1. Convergence to a minimum may take a long time.

2. There is no guarantee we will find the global minimum.

These are handled by using momentum terms and random perturbations to the weight vectors.

LECTURE-4

ADALINE & MADALINE:

Tne Adaline networks(ADAptive LINear Element) an d Madaline (Multiple Adaline) were

developed by Widrow. The structures use neurons and step/ sigmoidal activation function.

ADALINE has one output neuron but MADALINE has many. The learning is different from

a perceptron. It is here by Widrow-Hoff or LMS (Least Mean Square error) rule. Analogical

input or out put can be found by this network as minimum error function is searched befor

applying activation function.

ADALINE:

The structure includes an adaptive linear combiner (ALC) to obtain linear response that can

be applied to other elements of bipolar commutation. IF O/P of ALC is +ve response of

ADALINE is +1, and if –ve result of ADALINE is -1. It is represented by:

(3.11)

Fig. MADALINE network

LECTURE-5

The Multi-layered Perceptron training:

Improvements over Perceptron:

1) Smooth nonlinearity - sigmoid

2) 1 or more hidden layers

Training the hidden layer:

Not obvious how to train the hidden layer parameters.

The error term is meaningful only to the weights connected to the output layer. How to adjust

hidden layer connections so as to reduce output error? – credit assignment problem.

Any connection can be adapted by taking a full partial derivative over the error function, but

then to update a single weight in the first stage we need information about distant

neurons/connections close to the output layer (locality rule is violated). In a large network with

many layers, this implies that information is exchanged over distant elements of the network

though they are not directly connected. Such an algorithm may be mathematically valid, but is

biologically unrealistic.

The Backpropagation Algorithm:

As in Perceptron, this training algorithm involves 2 passes:

The forward pass – outputs of various layers are computed

The backward pass – weight corrections are computed

Consider a simple 3-layer network with a single neuron in each layer.

Therefore,

j

j j

jk
f = − f x

(6.2.2.1.16)

Similarly the update rule for the threshold term is,

 f = − f (6.2.2.1.17)

w k

Fig. Training using Back propagation algorithm

Traning:

Randomly initialize weights.

Train network using backprop eqns.

Stop training when error is sufficiently low and freeze the weights.

Testing

Start using the network.

Merits of MLP trained by BP:

a) A general solution to a large class of problems.

b) With sufficient number of hidden layer nodes, MLP can approximate arbitrary target

functions.

c) Backprop applies for arbitrary number of layers, partial connectivity (no loops).

d) Training is local both in time and space – parallel implementation made easy.

e) Hidden units act as “feature detectors.”

f) Good when no model is available

Problems with MLP trained by BP:

a) Blackbox approach

b) Limits of generalization not clear

c) Hard to incorporate prior knowledge of the model into the network

d) slow training

e) local minima

LECTURE-6

Architectures of MLP:

If there is no nonlinearity then an MLP can be reduced to a linear neuron.

1. Universal Approximator:

For the above theorem to be valid, the sigmoid function g(.) has to satisfy some conditions. It

must be: 1) non-constant, 2) bounded, 3) monotone-increasing and 4) continuous.

All the four transfer functions described in the section on Perceptrons satisfy conditions #1,2

and 3. But the hardlimiting nonlinearities are not continuous. Therefore, the logistic function

or the tanh function are suitable for use as sigmoids in MLPs.

2. In general more layers/nodes greater network complexity

Although 3 hidden layers with full connectivity are enough to learn any function often more

hidden layers and/or special architectures are used.

More hidden layers and/or hidden nodes:

3- layer network:

Arbitrary continuous function over a finite domain

4- layer network

Neurons in a 3-layer architecture tend to interact globally.

In a complex situation it is hard to improve the approximation at one point without worsening

it at another.
So in a 4-layer architecture:

st

1 hidden layer nodes are combined to construct locally sensitive neurons in the second
hidden layer.

Discontinuous functions:

learns discontinuous (inverse function of continuous function) functions also (Sontag, 1992)
For hard-limiting threshold functions:

st

1 hidden layer: semi-infinite regions separated by a hyper-plane
nd

2 hidden layer: convex regions
rd

3 hidden layer: non-convex regions also
Training MLP:

1. Initialization: is VERY important.

g‟(.) appears on the right side of all weight update rules.er sections 6.1.1, 6.1.2, 6.2.1). Note

that g‟(.) is high at the origin and falls on both sides. Therefore most learning happens when

the net input (h) to the neurons is close to 0. Hence it is desirable to make initial weights small.

A general rule for initialization of input weights for a given neuron is:

2. Batch mode and Sequential mode:

Epoch: presentation of all training patterns is called an epoch.

Batch mode:

Updating network weights once every epoch is called batch mode update.

- memory intensive

- greater chance of getting stuck in local minima

Sequential mode:

Updating the network weights after every presentation of a data point is sequential mode of

update.

- lesser memory requirement

- The random order of presentation of input patterns acts as a noise source lesser chance of

local minima

Rate of learning:

We have already seen the tradeoffs involved in choice of a learning rate.

Small learning rate η,approximate original continuous domain equations more closely but

slows down learning.

Large learning rate η ,oorer approximation of original equations. Error may not decrease

monotonically and may even oscillate. But learning is faster..

A good thumb rule for choosing eta 'η':

η = 1/m

Where „m‟ is the number of inputs to a neuron. This rule assumes that there are different η s

for different neurons.

3. Important tip relating learning rate and error surface:

Rough error surface,slow down, low η

Smooth (flat) error surface, speed up, high η

i) Momentum:

a) If |a| <1, the above time-series is convergent.

b) If the sign of the gradient remains the same over consecutive iterations the weighted sum

delta w
ji

grows exponentially i.e., accelerate when the terrain is clear.

c) If the gradient changes sign in consecutive iterations, delta w shrinks in magnitude i.e.,
ji

slow down when the terrain is rough.

ii) Separate eta for each weight:

a) Separate η for each weight

b) Every eta varies with time

c) If delta(w) changes sign several time in the past few iters, decrease η

d) If delta(w) doesn‟t change sign in the past few iters, increase η

Stopping Criteria: when do we stop training?

a) Error < a minimum.

b) Rate of change in error averaged over an epoch < a minimum.

c) Magnitude of gradient ||g(w)|| < a minimum.

d) When performance over a test set has peaked.

Premature Saturation:

All the weight modification activity happens only when |h| is within certain limits.

g‟(h) ≈ 0, or delta(w) = 0, for large |h|.

NN gets stuck in a shallow local minimum.

Solutions:

1) - Keep a copy of weights

- Retract to pre-saturation state

- Perturb weights, decrease η and proceed

2) - Reduce sigmoid gain (lambda) initially

e) Increase lambda gradually as error is minimized

Network doesn‟t get stuck, but never settles either.

Testing/generalization:

Idea of overfitting or overtraining:

Using too many hidden nodes, may cause overtraining. The network might just learn noise

and generalize poorly.

Example of polynomial interpolation:
Consider a data set generated from a quadratic function with noise added. A linear fit is likely

th

to give a large error. Best fit is obtained with a quadratic function. Fit 10 degree might give

a low error but is likely to learn the variations due to noise also. Such a fit is likely to do

poorly on a test data set. This is called overfitting or poor generalization.
This happens because there are many ways of generalizing from a given training data set.

The above Venn diagram illustrates the possibility of generalizing in multiple ways from a

given training data set. U is the universe of all possible input-output patterns. F (the ellipse)

represents the set of I/O pairs that define the function to be learnt by the mlp. T (circle) denotes

the training data set which is a subset of F. X denotes the test data set. The dotted rectangle

denotes the actual function learnt by the NN, which is consistent with the training set T, but is

completely non-overlapping with the test set X, and very different from the unknown function

F.

Applications of MLP

Three applications of MLPs that simulate aspects of sensory, motor or cognitive functions are

described.

1. Nettalk

2. Past tense learning

3. Autonomous Land Vehicle in a Neural Network (ALVINN)
LECTURE-6

Multilayer Feed-Foreward Network:

Fig. Characteristics of Multilayer feed-foreward network

The algorithm that was derived using gradient descent for nonlinear neural networks with

nonlinear activation function is popularly known as back propagation learning algorithm,

although the learning algorithm still is derived using gradient descent rule.

Multilayer feed forward network has more hidden layers and again, when I say feed forward

network, the connections are all allowed only from any layer to its succeeding layer, but the

connections are not allowed from any layer to its preceding layer. The example is you see

here there are four layers. These are all inputs. First hidden layer, second hidden layer, third

hidden layer and this is output layer. When we say the number of layers, we do not count the

input layer as one of the layers. When I say two layered network, then I have only one hidden

layer and next layer becomes output layer.

Fig. Multilayer feed foreward network

This particular configuration means there are sub-units, sub-neurons here and this particular

configuration, if I connect you will see why I say feed forward network, because I am able to

connect any layer from its preceding layer. That means connections are allowed from the

preceding layer to any layer, but cannot allow the feedback connection. (Refer Slide Time:

30:54) This is called feedback connection; this is not allowed. This is allowed. From this layer,

I can connect to this layer. This is allowed, but I cannot allow from this layer to connect to this

layer. These are called feedback connections. They are not allowed and that is why this is

known as feed forward network.

Today, we will derive a two-layered feed forward neural network with sigmoid activation

function. We can very easily see that this is 1 layer; this is the only hidden layer and this is

the only output layer; output layer is always only one.

We have a certain convention that we will put while deriving a back propagation learning

algorithm for this. The same simple principle; given training data, we allow the input to pass

through the network, compute the error here, use the gradient descent rule and the back

propagated error are used to modify the weights here that is between output layer and hidden

layer and again another form of back propagated error here has to be used for modification of

the weights between input layer and hidden layer. This is again the convention that we will use.

Fig. The Gradient descent rule

After choosing the weights of the network randomly, the backpropagation algorithm is used

to compute the necessary corrections. The algorithm can be decomposed in the following four

steps:

i) Feed-forward computation

ii) Backpropagation to the output layer

iii) Backpropagation to the hidden layer

iv) Weight updates

The algorithm is stopped when the value of the error function has become sufficiently small.

In the case of p > 1 input-output patterns, an extended network is used to compute the error

function for each of them separately. The weight corrections The Backpropagation Algorithm

are computed for each pattern and so we get, for example, for weight w(1)ij the corrections

The necessary update in the gradient direction is then

We speak of batch or off-line updates when the weight corrections are made in this way.

Often, however, the weight updates are made sequentially after each pattern presentation (this

is called on-line training). In this case the corrections do not exactly follow the negative

gradient direction, but if the training patterns are selected randomly the search direction

oscillates around the exact gradient direction and, on average, the algorithm implements a

form of descent in the error function. The rationale for using on-line training is that adding

some noise to the gradient direction can help to avoid falling into shallow local minima of the

error function. Also, when the training set consists of thousands of training patterns, it is very

expensive to compute the exact gradient direction since each epoch (one round of

presentation of all patterns to the network) consists of many feed-forward passes and on-line

training becomes more efficient.

Back Propagation Neural Network

Backpropagation is a training method used for a multi layer neural network. It is also called the

generalized delta rule. It is a gradient descent method which minimizes the total squared error

of the output computed by the net. Any neural network is expected to respond correctly to the

input patterns that are used for training which is termed as memorization and it should respond

reasonably to input that is similar to but not the same as the samples used for training which is

called generalization. The training of a neural network by back propagation takes place in three

stages 1. Feedforward of the input pattern 2. Calculation and Back propagation of the associated

error 3. Adjustments of the weights After the neural network is trained, the neural network has

to compute the feedforward phase only. Even if the training is slow, the trained net can produce

its output immediately.

Architecture

A multi layer neural network with one layer of hidden unitss is shown in the figure. The output

units and the hidden units can have biases. These bias terms are like weights on connections

from units whose output is always 1. During feedforward the signals flow in the forward

direction i.e. from input unit to hidden unit and finally to the output unit. During back

propagation phase of learning, the signals flow in the reverse direction.
Algorithm

The training involves three stages 1. Feedforward of the input training pattern 2. Back

propagation of the associated error 3. Adjustments of the weights. During feedforward, each

input unit (Xi) receives an input signal and sends this signal to each of the hidden units Z1, Z2,

…Zn. Each hidden unit computes its activation and sends its signal to each output unit. Each

output unit computes its activation to compute the output or the response of the neural net for

the given input pattern.

During training, each output unit compares its computed activation yk, with its target value tk

to determine the associated error for the particular pattern. Based on this error the factor ∂k for

all m values are computed. This computed ∂k is used to propagate the error at the output unit

Yk back to all units in the hidden layer. At a later stage it is also used for updation of weights

between the output and the hidden layer. In the same way ∂j for all p values are computed for

each hidden unit Zj. The values of ∂j are not sent back to the input units but are used to update

the weights between the hidden layer and the input layer. Once all the ∂ factrs are known, the

weights for all layers are changed simultaneously. The adjustment to all weights wjk is based

on the factor ∂k and the activation zj of the hidden unit Zj. The change in weight to the

connection between the input layer and the hidden layer is based on ∂j and the activation xi

of the input unit.

Activation Function

An activation function for a back propagation net should have important characteristics. It

should be continuous, Differentiable and monotonically non- decreasing. For computational

efficiency, it is better if the derivative is easy to calculate. For the commonly used activation

function, the derivative can be expressed in terms of the value of the function itself. The

function is expected to saturate asymptotically. The commonly used activation function is the

binary sigmoidal function.

Training Algorithm

The activation function used for a back propagation neural network can be either a bipolar

sigmoid or a binary sigmoid. The form of data plays an important role in choosing the type of

the activation function. Because of the relationship between the value of the function and its

derivative, additional evaluations of exponential functions are not required to be computed.

Algorithm

Step 0: Initialize weights

Step 1: While stopping condition is false, do steps 2 to 9

Step 2: For each training pair, do steps 3 - 8 Feed forward

Step 3: Input unit receives input signal and propagates it to all units in the hidden layer

Step 4: Each hidden unit sums its weighted input signals

Step 5: Each output unit sums its weighted input signals and applied its activation function to

compute its output signal.

Backpropagation Step 6: Each output unit receives a target pattern corresponding to the input

training pattern, computes its error information term δk = (tk – yk) f‟ (y_ink) Calculates its

bias correction term ΔWok = αδk And sends δk to units in the layer below

Step 7: Each hidden unit sums its delta inputs Multiplies by the derivative of its activation

function to calculate its error information term Calculates its weight correction term Δvij =

αδjxi And calculates its bias correction term Δvoj = αδj Update weights and biases

Step 8: Each output unit updates its bias and weights Wjk(new) = wjk(old) + Δ wjk Each hidden

unit updates its bias and weights Vij (new) = vij (old) + Δvij

Step9:Test stopping condition

LECTURE-7

Radial Basis Function Networks:

Fig. RBF network

j

• These are 3-layer networks that can approximate any continuous function through a basis

function expansion.

• The basis functions here (which are data dependent as earlier) exhibit some radial

symmetry.

• These networks have the so called perfect interpolation property.

The function represented by an RBF network with p hidden nodes can be written as

X is the input to the network.
• wj is weight from jth hidden node to the output.

• Á (||X −  j ||) is the output of the jth hidden node

and  j is the parameter vector associated with jth

hidden node, j = 1, ・・・ , p.

A very popular model is the Gaussian RBF network.

• Here the output is written as

• The  is called the center of the jth hidden or RBF node and  is called the width.

• We can have different  for different hidden nodes.

We next consider learning the parameters of a RBF network from training samples.

• Let {(Xi, di), i = 1, ・ ・ ・ ,N} be the training set.

• Suppose we are using the Gaussian RBF.

• Then we need to learn the centers ( j) and widths () of the hidden nodes and the weights

into the output node (wj).

Like earlier, we can find parameters to minimize empirical risk under squared error loss

function.

• Same as minimizing sum of squares of errors. Let

J is a function of , wj ,  j , j = 1, ・ ・ ・ , p.

We can find the weights/parameters of the network to minimize J.

• To minimize J, we can use the standard iterative algorithm of gradient descent.

• This needs computation of gradient which can be done directly from the expression for J.

• For this network structure there are no special methods to evaluate all the needed partial

derivatives. Such a gradient descent algorithm is certainly one method of learning an RBF

network from given training data.

• This is a general-purpose method for learning an RBF network.

• Like in the earlier case, we have to fix p, the number of hidden nodes.

• Such procedure would have the usual problems of converging to a local minimum of the error

function.

• There are also other methods of learning an RBF network.

• If we have the basis functions, Áj , then it is exactly same as a linear model and we can use

standard linear least squares method to learn wj .

• To fix Áj , we need to essentially fix  j (and may be ).

• So, if we can somehow fix centers and widths of the RBF nodes, then we can learn the wj

very easily.
As we have discussed earlier, these RBF networks use „local‟ representations.

• What this means is that  j should be „representative‟ points of the feature space and they

should „cover‟ the feature space.

• Essentially, the proof that these networks can represent any continuous function is based on

having such centers for RBF nodes.
• We can use such ideas to formulate methods for fixing centers of RBF nodes.

One simple method of choosing centers,  j

examples.

, is to randomly choose p of the training

• We know that with N hidden nodes and centers same as training examples, we get perfect

interpolation.

• Hence we can take some of the training examples as centers.

• There can be some variations on this theme.

• However, such a method does not, in general, ensure that we have representative points in

the feature space as centers.

When we have p hidden nodes, we need p „centers‟.

• Hence we are looking for p number of „representative‟points in the feature space.

• The only information we have are the N training examples.

• Hence the problem is:

given N points, Xi, i = 1, ・ ・ ・ ,N in <m, find p „representative‟ points in <m.

• This is the „clustering problem‟ This is a problem of forming the data into p clusters.

• We can take the „cluster centers‟ to be the representative points.

• The kind of clusters we get depends on how we want to formalize the notion of the p points

being representative of the N data points.

• We now look at one notion of clustering that is popular.

Let 1 , ・ ・ ・ , p represent the p cluster centers.

• Now we need an objective function that specifies how representative these are of the data

Xi, i = 1, ・ ・ ・ ,N.

Now we can define a cost function as

• The J is a function of  j , j = 1, ・ ・ ・ , p. (Note that Sj are also functions of the  j ‟s).

• For a given set of centers, { j }, J gives us the total error in approximating each of the

training data by its nearest cluster center.

• Hence we want to choose centers to minimize J We now discuss a simple algorithm to find
centers to minimize J.

• This is known as K-means clustering algorithm.

(Originally proposed by Lloyd in the context of vector quantization).

• We are given N data points, Xi, i = 1, ・ ・ ・ ,N.

We want to find p cluster centers  j , j = 1, ・ ・ ・ , p, to minimize J.

• We first rewrite J in a different form to motivate our algorithm.

We think of the problem as finding the centers

clusters.

1 , ・ ・ ・ , p and assigning Xi to these

• Let  j , n = 1, ・ ・ ・ ,N, j = 1, ・ ・ ・ , p be indicators of the cluster assignment.

• That is, if we assign Xn to cluster j, then we would have

• Now we can rewrite J as

1 = 1 and p = 0,

We now have to find a way of minimizing J wrt all nj and j .

Note that for a given n, nj is 1 for exactly one j (and it is zero otherwise).

• Thus the μj would be the mean of all data vectors assigned to the jth cluster.
• This is the reason for the name K-means clustering.

• What we derived are optimum values for

μj fixed and optimum values for μj keeping

nj keeping

nj fixed.

• Hence, in an algorithm we do this repeatedly.

• This is like the EM algorithm.

LECTURE-8

Experiences or learning:

Learning algorithms use experiences in the form of perceptions or perception action pairs to

improve their performance. The nature of experiences available varies with applications. Some

common situations are described below.

Supervised learning: In supervised learning a teacher or oracle is available which provides the

desired action corresponding to a perception. A set of perception action pair provides what is

called a training set. Examples include an automated vehicle where a set of vision inputs and

the corresponding steering actions are available to the learner.

Fig. Supervised learning

Unsupervised learning: In unsupervised learning no teacher is available. The learner only

discovers persistent patterns in the data consisting of a collection of perceptions. This is also

called exploratory learning. Finding out malicious network attacks from a sequence of

anomalous data packets is an example of unsupervised learning.

Active learning: Here not only a teacher is available, the learner has the freedom to ask the

teacher for suitable perception-action example pairs which will help the learner to improve its

performance. Consider a news recommender system which tries to learn an users preferences

and categorize news articles as interesting or uninteresting to the user. The system may present

a particular article (of which it is not sure) to the user and ask whether it is interesting or not.

Reinforcement learning: In reinforcement learning a teacher is available, but the teacher

instead of directly providing the desired action corresponding to a perception, return reward

and punishment to the learner for its action corresponding to a perception. Examples include

a robot in a unknown terrain where its get a punishment when its hits an obstacle and reward

when it moves smoothly.

In order to design a learning system the designer has to make the following choices based on

the application.

LECTURE-9

Unsupervised Learning in Neural Networks:

Unsupervised learning mechanisms differ from supervised learning in that there is no "teacher"

to instruct the network.

Competitive Learning:

Competitive learning is a form of unsupervised learning which performs clustering over the

input data. In a competitive learning network with n-output neurons, each output neuron is

associated with a cluster. When a data point from a cluster is presented to the network, only the

neuron corresponding to that cluster responds, while all other neurons remain silent. The single

neuron that responds is often called a “winner” and therefore a competitive learning network

of the kind just described is also known as a “winner-take-all” network.

It is easiest to introduce CL mechanism as a slight variation of Hebb‟s rule.

Kohonen Self-organizing Map:

It is also known as Kohonen feature map or topology-preserving map or Kohonen Self-

organizing .

Information is often represented spatially in the two-dimensional neuronal sheets in the brain,

in both the cortex and subcortical structures. We have learnt about the somtosensory, motor

and visual maps in the corresponding sensory cortices in the brain. A map, in its ordinary sense,

denotes a two-dimensional representation of a real-world domain, such that nearby points in

the domain are mapped onto nearby points in the map.

Due to this “adjacency-preserving” property, these maps are also called topographic maps.

Self-organizing maps (SOM) are models of the topographic maps of the brain, first proposed

by Teovo Kohonen.

The SOM model can be presented as an extension of the competitive learning model described

in the previous section. It is constructed by adding a biologically-relevant feature that is not

originally present in the competitive learning network.

A key property of the SOM is that nearby or similar inputs activate nearby neurons in the map.

The competitive learning network does not have this property.

Consider a hypothetical competitive learning network with 3 output neurons. The input space

is two-dimensional. The weight vectors w1, w2, w3 lie on a line as shown in Fig., with w1 in

between w2 and w3. Note that such an arrangement is possible since there is no relation

between the spatial position of the weight vectors and their indices.

Fig. weight vectors and their indices when not related

The essence of the modification proposed in the SOM model, is a mechanism that ensures that

the weight vectors remain spatially ordered, while they also move towards the data points that

activate them maximally.

Unlike a competitive learning network, which consists of a single row of output neurons, a

SOM consists of a m-dimensional grid of neurons. Usually two-dimensional SOMs are studied

since SOMs were originally inspired by the two-dimensional maps in the brain. The topology

of the grid is usually rectangular, though sometimes hexagonal topologies (Fig.) are also

considered.

Figure: Rectangular and hexagonal trajectories of Kohonen‟s network

As in the case of competitive learning, the weight vector of the winner is moved towards the

input, x. But addition, neurons close to the winner in the SOM are also moved towards the

input, x, but with a lesser learning rate. Neurons that are nearby in the SOM are defined by a

neighborhood N .

Fig. For the neuron in white (center) the neurons in red represent the neighborhood if we

consider the neighborhood radius to be 1

Neighborhood size is large in the early stages, and is decreased gradually as training

progresses.

Learning Vector Quantization(LVQ):

Vector quantization is noting but clustering, where Given a set of vectors {x}, find a set of

representative vectors {wm; 1 ≤m ≤M} such that each x is quantized into a particular wm.

{wm} locate at the mean (centroid) of the density distribution of each cluster. LVQ is an

unsupervised pattern classifier where the actual class membership information is not used.

Fig. Clusters of data

Applications of LVQ:

Speech Recognition

• Robot Arm control

• Industrial process control

• automated synthesis of digital systems

• channel equalization for telecommunication

• image compression

• radar classification of sea-ice

• optimization problems

• sentence understanding

• classification of insect courtship songs

LECTURE-10

Linear neuron model: (Hebbian Learning)

Hebb described a simple learning method of synaptic weight change. In Hebbian learning,

when 2 cells have strong responses, and fire simultaneously, their connection strength or weight

increases. The weight increase is proportional to the frequency at which they fire together.

Fig. A simple network topology for Hebbian Learning, where Wij resides between two neurons

Where η is the learning rate, f (.) is the neuron function, x is the input to the jth neuron.

Since the weights are adjusted according to the correlation formula is a type of correlational

learning rule.

A sequence of learning patterns indexed by p is presented to the network. Initial weights are

taken zero. So updated weight after entire data set is:

Frequent input patterns have more impact on weights, giving largest output at end.

The objective function is maximized to maximize output.

This rule causes unconstrained growth of weights. Hebbian rule was modified by Oja by

normalization.

Modified Hebbian Learning:

For small learning rate expanding in Taylor‟s series weight update rule becomes

Here, a weight decay proportional to the squared output is added to maintain weight vector

unit length automatically.

LECTURE-11

ANFIS: Adaptive Neuro-Fuzzy Inference Systems:

ANFIS are a class of adaptive networks that are functionally equivalent to fuzzy inference

systems.

• ANFIS represent Sugeno & Tsukamoto fuzzymodels.

• ANFIS uses a hybrid learning algorithm

Fig. Architecture of ANFIS

Ol,i is the output of the ith node of the layer l.

• Every node i in this layer is an adaptive node with a node function

O1,i = μAi(x) for i = 1, 2, or O1,i = μBi−2(x) for i = 3, 4

• x (or y) is the input node i and Ai (or Bi−2) is a linguistic label associated with this node

• Therefore O1,i is the membership grade of a fuzzy set (A1,A2,B1,B2).

Typical membership function is Gaussian.

Every node in this layer is a fixed node labelled Prod.

• The output is the product of all the incoming signals.

• O2,i = wi = μAi(x) ・ μBi(y), i = 1, 2

• Each node represents the fire strength of the rule

• Any other T-norm operator that perform the AND operator can be used

Every node in this layer is a fixed node labelled Norm.

• The ith node calculates the ratio of the ith rulet‟s firing strenght to the sum of all rulet‟s

firing strengths.

• O3,i = wi = wi w1+w2 , i = 1, 2

• Outputs are called normalized firing strengths.

Every node i in this layer is an adaptive node with a node function:

O4,1 = wifi = wi(px + qiy + ri)

• wi is the normalized firing strenght from layer 3.

• {pi, qi, ri} is the parameter set of this node.

• These are referred to as consequent parameters.

The single node in this layer is a fixed node labeled sum, which computes the overall output

as the summation of all incoming signals:

• overall output = O5,1 =Pi wifi = Pi wifi Pi wi

Hybrid Learning Algorithm:

The ANFIS can be trained by a hybrid learning algorithm presented by Jang in the chapter 8

of the book.

• In the forward pass the algorithm uses least-squares method to identify the consequent

parameters on the layer 4.

• In the backward pass the errors are propagated backward and the premise parameters are

updated by gradient descent.

Fig. Two passes in the hybrid learning algorithm for ANFIS.

Suppose that an adptive network has L layers and the kth layer has #(k) nodes.

• We can denote the node in the ith position of the kth layer by (k, i).

• The node function is denoted by Oki .

• Since the node output depends on its incoming signals and its parameter set (a, b, c), we

have

• Notice that Oki is used as both node output and node function. Assume that a training data

set has P entries.

• The error measure for the pth entry can be defined as the sum of the squared error

Tm,p is the mth component of the pth target.

• OLm,p is the mth component the actual output vector.

• The overall error is

In order to implement the gradient descent in E we calculate the error rate E

O for the pth training data for each node output O.

• The error rate for the output note at (L, i) is

For the internal node at (k, i), the error rate can be derived by the chain rule:

where 1 ≤ k ≤ L − 1

• The error rate of an internal node is a linear combination of the error rates of the nodes in

the next layer.

Consider _ one of the parameters.

• Therefore

where S is the set of nodes

• The derivative of the overall error with respect to _ is

The update formula for  is

If the parameters are to be updated after each input-output pair (on-line training) then the

update formula is:

With the batch learning (off-line learning) the update formula is based on the derivative of

the overall error with respect to α:

Problems of the gradient descent are:

The method is slow.

• It is likely to be trapped in local minima.

Hybrid Learning Rule:

Combines:

• the gradient rule;

• the least squares estimate.

Considere that the adptive network has only one output.

• output = F(I, S)

• I is the vector of input variables.

• S is the set of parameters.

• F is the function implemented by the ANFIS.

• If there exists a function H such that the composite function H ◦ F is linear in some elements

of S then these elements can be identified by LSM.

More formally, if the parameter set S can be decomposed into two sets S = S1 ⊕ S2 (⊕
direct sum), such that H ◦ F is linear in the elements of S2

• then applying H to output = F(I, S) we have H(output) = H ◦ F(I, S) (7) which is linear in the

elements of S2.

• Given values of elements of S1, it is possible to plug P training data in equation 7.

• As a result we obtain a matrix equation A_ = y where _ is the unknown vector whose

elements are parameters in S2.

• This is the standard linear least-square problem.

Combining LSE and gradient descent:

- forward pass

In batch mode, each epoch is composed of a forward pass and a backward pass.

• In the forward pass an input vector is presented and the output is calculated creating a row

in the matrices A and y.

• The process is repeated for all training data and the parameters S2 are identified by BLS or

RLS.

• After S2 is identified the error for each pair is computed.

Combining LSE and gradient descent:

- backward pass

The derivative of the error measure with respect to each node output propagate from the

output toward the input.

• The derivatives are:

The parameters in S2 are updated by the gradient method

Applications of ANFIS:

1. Printed Character recognition

2. Inverse Kinematics

3. Nonlinear System identification

4. Channel Equalization

5. Feed back control system

6. Adaptive noise cancellation

